Homoclinic Groups, Ie Groups, and Expansive Algebraic Actions
نویسندگان
چکیده
We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups by automorphisms, and show that the IE group determines the Pinsker factor for such actions. For an expansive algebraic action of a polycyclic-by-finite group on X, it is shown that the entropy of the action is equal to the entropy of the induced action on the Pontryagin dual of the homoclinic group, the homoclinic group is a dense subgroup of the IE group, the homoclinic group is nontrivial exactly when the action has positive entropy, and the homoclinic group is dense in X exactly when the action has completely positive entropy.
منابع مشابه
Homoclinic Group, Ie Group, and Expansive Algebraic Actions
We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups...
متن کاملExpansive Subdynamics for Algebraic Z -actions
A general framework for investigating topological actions of Zd on compact metric spaces was proposed by Boyle and Lind in terms of expansive behavior along lower-dimensional subspaces ofRd . Here we completely describe this expansive behavior for the class of algebraic Zd -actions given by commuting automorphisms of compact abelian groups. The description uses the logarithmic image of an algeb...
متن کاملIrreducibility, Homoclinic Points and Adjoint Actions of Algebraic Z–Actions of Rank One
In this paper we consider Z-actions, d ≥ 1, by automorphisms of compact connected abelian groups which contain at least one expansive automorphism (such actions are called algebraic Z-actions of expansive rank one). If α is such a Z-action on an infinite compact connected abelian group X, then every expansive element α of this action has a dense group ∆αn(X) of homoclinic points. For different ...
متن کاملExpansive Subdynamics for Algebraic Actions 21
A general framework for investigating topological actions of Z d on compact metric spaces was proposed by Boyle and Lind in terms of expansive behavior along lower dimensional subspaces of R d. Here we completely describe this expansive behavior for the class of algebraic Z d-actions given by commuting automorphisms of compact abelian groups. The description uses the logarithmic image of an alg...
متن کاملEXPANSIVE SUBDYNAMICS FOR ALGEBRAIC Z d-ACTIONS
A general framework for investigating topological actions of Z d on compact metric spaces was proposed by Boyle and Lind in terms of expansive behavior along lower-dimensional subspaces of R d. Here we completely describe this expansive behavior for the class of algebraic Z d-actions given by commuting automorphisms of compact abelian groups. The description uses the logarithmic image of an alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011